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 12 

Abstract 13 

Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with 14 

high morbidity and mortality. As there are currently no effective drugs targeting this virus, 15 

drug repurposing represents a short-term strategy to treat millions of infected patients at low 16 

costs. Hydroxychloroquine showed an antiviral effect in vitro. In vivo it also showed efficacy, 17 

especially when combined with azithromycin in a preliminary clinical trial. Here we 18 

demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic 19 

effect in vitro on SARS-CoV-2 at concentrations compatible with that obtained in human 20 

lung. 21 
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Background 26 

Since the end of 2019, the world has encountered epidemic conditions attributable to a novel 27 

Coronavirus SARS-CoV 2 (1-3). This is the 7th Coronavirus identified to infect Human 28 

population (1;4;5) and the first one that had pandemic potential in non-immune populations in 29 

the 21st century (6). Finding therapeutics is thus crucial, and it is proposed to do so by 30 

repurposing existing drugs (7-9). This strategy presents the advantages that safety profiles of 31 

such drugs are known and that they could be easily produced at relatively low cost, thus being 32 

quicker to deploy than new drugs or a vaccine. Chloroquine, a decades-old antimalarial agent, 33 

an analog of quinine, was known to inhibit the acidification of intracellular compartments 34 

(10) and has shown in vitro and in vivo (mice models) activity against different subtypes of 35 

Coronaviruses: SARS-CoV-1, MERS-CoV, HCoV-229E and HCoV-OC43 (11-16). In 2004 it 36 

was tested in vitro against SARS-CoV 1 (17) and caused a 99% reduction of viral replication 37 

after 3 days at 16 μM. Moreover, tests in vitro have shown inhibition of viral replication on 38 

SARS-CoV 2 detected by PCR and by CCK-8 assay (18). Hydroxychloroquine 39 

(hydroxychloroquine sulfate; 7-Chloro-4-[4-(N-ethyl-N-b-hydroxyethylamino)-1-40 

methylbutylamino]quinoline sulfate) has shown activity against SARS-CoV2 in vitro and 41 

exhibited a less toxic profile (19). This drug is well known and currently used mostly to treat 42 

autoimmune diseases and also by our team to treat Q fever disease (20;21) and Whipple’s 43 

disease (22;23). In those clinical contexts, concentrations obtained in serum are close to 0.4-1 44 

µg/mL at the dose of 600 mg per day over several months (24). Clinical tests of chloroquine 45 

and hydroxychloroquine to treat COVID-19 are underway in China (25), with such trials 46 

using hydroxychloroquine in progress in the US (ClinicalTrials.gov Identifier: 47 

NCT04307693) and in Europe with the Discovery Trial.  In this drug repurposing effort, 48 

antibacterial components have also been tested. Teicoplanin, a glycopeptide, was 49 

demonstrated in vitro to inhibit cellular penetration of Ebola virus (26) and SARS-CoV 2 50 



(27). Azithromycin (azithromycin dehydrate), a macrolide, N-Methyl-11-aza-10-deoxo-10-51 

dihydroerythromycin A, has shown antiviral activity against Zika (28-30) . Azithromycin is a 52 

well-known and safe drug, widely prescribed in the US, for example, with 12 million 53 

treatment courses in children under 19 years of age alone. (31). A recent study has identified 54 

these two compounds (azithromycin and hydroxychloroquine) among 97 total potentially 55 

active agents as possible treatments for this disease (32). 56 

In a preliminary clinical study, hydroxychloroquine and, with even greater potency, the 57 

combination of hydroxychloroquine and azithromycin were found effective in reducing the 58 

SARS-CoV-2 viral load in COVID-19 patients (33). Since the beginning of the epidemic in 59 

the Marseille region we isolated numerous strains and we tested one of them, the SARS-CoV-60 

2 IHUMI-3, using different concentrations of hydroxychloroquine and azithromycin, alone 61 

and in combination, with Vero E6 cells. 62 

Materials and Methods 63 

Viral isolation procedure and viral stock 64 

The procedure of viral isolation of our SARS-Cov 2 strain IHUMI-3 was detailed elsewhere 65 

(33). The viral production was done in 75 cm2 cell culture flask containing Vero E6 cells 66 

(American type culture collection ATCC® CRL-1586™) in MEM with 4% of fetal bovine 67 

serum and 1% glutamine. Cytopathic effect was monitored daily under an inverted 68 

microscope (Figure 1). After nearly complete cell lysis (approximately 96 hours), viral 69 

supernatant was used for inoculation on 96-wells plate.  70 

Testing procedure for drugs 71 

Briefly, we prepared 96-well plates with 5.105 cells/mL of Vero E6 (200µL per well), using 72 

Minimum Essential Media (Gibco, ThermoFischer) with 4% of fetal bovine serum and 1% 73 

glutamine. Plates were incubated overnight at 37°C in a CO2 atmosphere. Drug concentrations 74 

tested were 1, 2 and 5 M for hydroxychloroquine and 2, 5 and 10 M for azithromycin. We 75 



also tested combinations of these agents at these concentrations, each test done at least in 76 

triplicate. Four hours before infection, cell culture supernatant was removed and replaced by 77 

drugs diluted in the culture medium. At t=0, virus suspension in culture medium was added to 78 

all wells except in negative controls where 50µL of the medium was added. We tested 79 

different multiplicities of infection (MOI) at 2.5  and at 0.25. RT-PCR was done 30 minutes 80 

post-infection in one plate and again at 60 hours post-infection on a second plate. For this, 81 

100 L from each well was collected and added to 100 L of the ready-use VXL buffer from 82 

QIAcube kit (Qiagen, Germany). The extraction was done using the manual High Pure RNA 83 

Isolation Kit (Roche Life Science), following the recommended procedures. The RT-PCR was 84 

done using the Roche RealTime PCR Ready RNA Virus Master Kit. The primers were 85 

designed against the E gene using the protocol of Amrane et al. (34) in the Roche 86 

LightCycler® 480 Instrument II. 87 

Results 88 

No cytotoxicity was associated with drugs alone or in combination in controls wells 89 

(without viruses). We detected RNA viral production from 24 to 16 cycle-thresholds (Ct, 90 

inversely correlated with RNA copy numbers) for the positive control that was associated 91 

with cell lysis. In all cases, cell lysis at 60 hours was correlated with viral production as 92 

compared to control (Figure 2). At low MOI, azithromycin or hydroxychloroquine alone had 93 

no or low impact on the viral production compared to the positive control. We observed only 94 

a moderate effect for hydroxychloroquine at 5 µM in 2 of the 3 replicates (Figure 2a). For the 95 

combination of azithromycin and hydroxychloroquine, we observed inhibition of viral 96 

replication  for wells containing hydroxychloroquine at 5 M in combination with 97 

azithromycin at 10 and 5 M (Figure 2b). Moreover, no cytopathic effect was observed at 60 98 

hours post infection in these wells (Figure 3).  At high MOI, neither drug showed any effect. 99 



The unique observed effect  was with the combination of hydroxychloroquine at 2 M and 100 

azithromycin at 10 M, leading to total inhibition of viralreplication. 101 

 102 

Discussion 103 

In this present work, we could confirm a moderate effect of hydroxychloroquine alone on 104 

SARS-CoV2 at low MOI as previously observed with the lowest concentrations used in a 105 

prior study (19). The most striking observation was the synergistic effect of the combination 106 

of hydroxychloroquine and azithromycin. As compared to other studies testing 107 

hydroxychloroquine for which viral growth was evaluated at 48h, our conditions with 108 

prolonged incubation time of 60 hours showed that this effect remained observable. As for 109 

MOI, even at the higher MOI of 2.5, as compared to the data of Liu et al. where the highest 110 

MOI was of 0.8, the effect of the combination to inhibit viral growth was observable. 111 

Hydroxychloroquine has been demonstrated in vitro to inhibit replication of SARS-CoVs 1 112 

and 2 (17;19). Concentrations of drugs for our study were based on the known cytotoxicity 113 

drugs (50% of cytotoxicity, EC 50) and their effect on microorganisms (50% inhibitory 114 

concentration, IC50). With Zika virus, azithromycin showed activity with an IC 50 range 115 

from 2.1 to 5.1 μM depending MOI (28) without notable effect on EC 50 at high 116 

concentration (29). On Vero E6 it was shown that for hydroxychloroquine, EC 50 is close to 117 

250 μM (249.50 μM), which is significantly above the concentrations we tested herein (19). 118 

Against SARS-CoV 2, the IC 50 of hydroxychloroquine was determined to be 4.51, 4.06, 119 

17.31, and 12.96 μM with various MOI of 0.01, 0.02, 0.2, and 0.8, respectively.  120 

One of the main criticisms of previously published data was that drug concentrations for viral  121 

inhibitionused in vitro are difficult to translate clinically due to side effects that would occur 122 

at those concentrations. The synergy between azithromycin and hydroxychloroquine that we 123 

observed herein is at concentrations achieved in vivo and detected in pulmonary tissues (35-124 



37). Our data are thus in agreement with the clinical efficacy of the combination of 125 

hydroxychloroquineand azithromycin demonstrated by Gautret et al. (33). They support the 126 

clinical use of this drug combination, especially at the early stage of the COVID-19 infection 127 

before the patients have respiratory distress syndrome with associated cytokine storm and 128 

become less treatable by any antiviral treatment. 129 

 130 

 131 

Figure 1: Observations of infected Vero E6 Monolayer. 132 

Observation was done 48 hours post infection by the SARS-CoV 2 strain IHUMI-3. 133 

Magnitude X400. The picture was captured on ZEISS AxioCam ERC 5s. 134 

 135 

 136 

Figure 2: RNA viral quantification between 0 and 60 hours post infection. 137 



For each condition, the first histogram represents average RNA cycle-thresholds 138 

quantification at H0, and the second histogram represents average RNA viral quantification 139 

60 hours post-infection. Standard deviation scales are present for each condition (n=3 for all 140 

conditions and n=4 for the positive control). 141 

2A. represents molecules tested alone, A10 is for azithromycin at 10 M, A5 at 5 M, A2 is 142 

at 2 M, H5 is for hydroxychloroquine at 5 M, H2 for 2 M, H1 for 1 µM. 2B. represents 143 

the combination of molecules tested.  144 

 145 

Figure 3: Observations of infected cells resistant or not to viral replication. 146 

Picture were captured on ZEISS AxioCam ERC 5s, 58 hours post infection by the SARS-CoV 147 

2 strain IHUMI-3. Magnitude X200. 3A-B-C. overview of the monolayer in each well for the 148 

condition of Azithromycin 5 M associated with hydroxychloroquine at 5 M, 3D. shows a 149 

cytopathic effect observed in one well in the condition Azithromycin 10 M combined with 150 

hydroxychloroquine at 2 M 3E. negative control well and 3F. positive control well. 151 
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